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Bandlet basis and bandlet estimation.
Thresholding, model selection, minimax and maxiset.
Sketch of proof.
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Approximations of f which is C
α away from C

α “edge” curves:
2j∼ T ∼M−1

With M wavelets: ‖f − fM ‖2 ≤ C M−1.
(Cohen, DeVore, Petrushev, Xue): Optimal for bounded variation
functions: ‖f − fM ‖2 ≤ C M−1.
But: does not take advantage of any geometric regularity.
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Approximation of f that is C
α outside C

α contours:

Piecewise linear approximation with M adapted triangles:
if α ≥ 2 then ‖f − fM ‖2 ≤ C M−2.

M−1

M−2

Higher order approximation with M adapted “higher order elements”:
‖f − fM ‖2 ≤ C M−α.

M−1

M−α

Not a basis and difficult optimization.
If α = 2 : curvelet tight frame is almost optimal.
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α simple piecewise.
Locale deformation =⇒ vertical/horizontal singularities.
Local bandlets: preimage of an adapted basis.
Bandlet basis: dyadic segmentation + a geometry per square.
Theorem: If f is C

α − C
α, then, in a best basis,

‖f − fM ‖2 ≤ C(log M)M−α .

Lagrangian approach: minimization of ‖f − fM ‖2 + T 2M =⇒
thresholding in a fixed basis (easy) and best basis search (difficult).
Hierarchical structure of the segmentation and additivity of the
Lagrangian : Wickerhauser’s best basis algorithm (CART).
Exhaustive exploration of the geometries in each square.
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(c)

Bandlets: monoscale geometric representation.
Wavelets: good multiscale representation.
How to combine both?
Bandlets on the wavelet coefficients!
Analogy with the visual system.
Similar ideas in JPEG2000, Edgeprint,...
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w

ℓ =-1 ℓ =-2 ℓ =-3

(a)

(a’)

(b) (c) (d)

(b’) (c’) (d’)

Bandlets 2G (Peyré) : orthogonal change of basis on the wavelet
coefficients adapted to the geometry.
Multiresolution space of piecewise polynomial approximation.
Basis of the orthogonal complement spaces (Alpert).
Image of the wavelets through this change of basis: bandlets 2G.
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Bandlet 2G Basis

Bandlet basis:

dyadic segmentation of the subbands,
geometry in each square.

Theorem: If f est C
α − C

α, then, in the best basis,

‖f − fM ‖2 ≤ CM−α

Basis structure and polynomial number of bandlets: “fast” optimization
algorithm (dynamic programming/CART) of

‖f − fM ‖2 + T 2M .

How to use these bases for estimation?
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Bandlets for Geometric Image Estimation

Estimation in the white noise model: Y = f + ǫW with W a standard
gaussian white noise and ǫ the known standard deviation.
Question: how to find an estimate F of f from Y so that the quadratic
risk E(‖f − F‖2) is small?
Answer: approximate Y with the best bandlet basis algorithm with a

threshold T = λ
√

log ǫ
ǫ2 ! Noisy

Estimation Wavelets Bandlets

Questions:

How is this working?
Why is it almost optimal for C

α − C
α functions? (Minimax)

For which functions this method works efficiently? (Maxiset)
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Y =
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〈Y, bn〉bn =
∑
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(〈f, bn〉 + ǫ〈W, bn〉) bn .

Estimate F by a simple coordinate selection process

F = YΓ =
∑

n∈Γ

〈Y, bn〉bn .

Minimization of the quadratic risk:

E(‖f − F‖2) =
∑

n/∈Γ

|〈f, bn〉|2 +
∑

n∈Γ

ǫ2 .

Solution: ΓO = {n, |〈f, bn〉| ≥ ǫ} et FO = YΓ0
.

Big issue: requires the knowledge of f ! (Oracle 6=estimate)
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How to measure the performance of a given estimator? Minimax or
Maxiset?
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Minimax: for a given function class Θ and a given estimator F , what is
the largest β such that

∀f ∈ Θ, ∃C, ∀ǫ, E(‖f − F‖2) ≤ C
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β
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‖2 + ǫ2|ΓO| ≤ C

(

ǫ2
)

β
β+1

⇔ ‖f − fM ‖2 ≤ CM−β ⇔ f ∈ Aβ .

Oracle minimax : for Θ, a given function class, which basis gives

Θ ⊂ Aβ with a large β ? / Is
(

ǫ2
)

β
β+1 the minimax rate?.

Oracle maxiset : The set of functions that are estimated with the rate
(

ǫ2
)

β
β+1 is Aβ .
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Oracle : ΓO = {n, |〈f, bn〉| ≥ ǫ} and FO = YΓ0
.

Strategy: keep the largest coefficients!
Thresholding: ΓS = {n, |〈Y, bn〉| ≥ T (ǫ) and n ≤ Cǫ−γ} and FS = YΓS

.
Theorem (Donoho, Johnstone): If T (ǫ) = λ

√

| log(ǫ)|ǫ, then

E(‖f − FS‖2) ≤ C| log(ǫ)|E(‖f − FO‖2)

E(‖f − FS‖2) ≤ C min
Γ

‖f − fΓ‖2 + λ2| log(ǫ)|ǫ2|Γ| more precise.

Theorem (Maxiset) (Cohen, DeVore, Kerkyacharian, Picard):

E(‖f − FS‖2) ≤ C
(

| log(ǫ)|ǫ2
)

β
β+1 ⇔ f ∈ V ∗

2β
β+1

⇔ min
Γ

‖f − fΓ‖2 + λ2T 2|Γ| ≤ C(T 2)
β

β+1

⇔ ‖f − fM ‖2 ≤ CM−β plus linear approximation property (γ!)

⇔ f ∈ Aβ
γ .

Key factor: Approximation properties of the basis!
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Natural question: Is C
α − C

α in WBα
2/(2α+1),2/(2α+1) ?

Rephrased question: Are the function of C
α − C

α approximable at the
rate M−α?
Answer: No, C

α − C
α 6⊂ WBα

2/(2α+1),2/(2α+1)!
Well known approximation fact: with M wavelets ‖f − fM ‖2 ≤ C M−1.
Minimax risk requires ‖f − fM ‖2 ≤ C M−α.
Bandlets gives the correct rate =⇒ bandlets thresholding?
Big issue: how to threshold in the “best” bandlet basis without
knowing f?
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Minimization: ΓS = {n ≤ ǫ−γ , |〈Y, bn〉| ≥ λ
√

| log(ǫ)|ǫ} (thresholding)
and FS = YΓS

.
Model selection:

FS = argmin
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‖Y − PmY ‖2 + λ2| log(ǫ)|ǫ2 dim(m) .

with Mǫ, model collection, with models m = subspaces spanned by
some of the ǫ−γ first basis vector.
Theorem (Barron, Birgé, Massart) ≃ (Donoho, Johnstone): For λ
large enough,

E(‖f − FS‖2) ≤ C min
m∈Mǫ

‖f − Pmf‖2 + λ2| log(ǫ)|ǫ2 dim(m) .

Suitable approach when more than one basis is considered.
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Model Selection

Simplified setting: Mǫ model collection with each model m spanned by
some vectors chosen amongst κ different vectors.
Theorem (Barron, Birgé, Massart):

FS = argmin
PmY, m∈Mǫ

‖Y − PmY ‖2 + λ2 log(κ)ǫ2 dim(m)

satisfies

E(‖f − FS‖2) ≤ C min
m∈Mǫ

‖f − Pmf‖2 + λ2 log(κ)ǫ2 dim(m) .

Theorem (Maxiset):

E(‖f − FS‖2) ≤ C
(

log(κ)ǫ2
)

β
β+1

⇔ min
m∈Mǫ

‖f − Pmf‖2 + λ2 log(κ)ǫ2 dim(m) ≤ C
(

log(κ)ǫ2
)

β
β+1

⇔ min
m∈Mǫ

‖f − Pmf‖2 + T 2 dim(m) ≤ C
(

T 2
)

β
β+1

⇔ ‖f − fM ‖2 ≤ CM−β plus linear approximation property

⇔ f ∈ Aβ
κ .
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Mǫ: collection of subspaces spanned by some of the first ǫ−γ basis
vector of a suitable collection of bandelet bases.
Polynomial bound on the number κ of bandlets in all the considered
bandlet basis: log κ = γ| log ǫ|.
Bandlet model selection:

FS = argmin
m∈M

‖Y − PmY ‖2 + λ2| log(ǫ)|ǫ2dim(m)

Same optimization algorithm than for approximation.
Theorem (Almost minimax optimality): if f ∈ C

α − C
α the

E(‖f − FS‖2) ≤ C (| log(ǫ)|)
α

α+1 .

Theorem (Maxiset):

E(‖f − FS‖2) ≤ C
(

| log(ǫ)|ǫ2
)

α
α+1 ⇔ f ∈ Aα

γ

⇔ ∀M, ∃B, ‖f − fM ‖2 ≤ CM−α

plus linear approximation property .
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Sketch of proof
Model selection and Maxiset Theorems sketch of proof.
ǫ2 = 1

N
Players:

Estimate: FS = argminm∈M ‖Y − PmY ‖2 + λ log N
N dim(m)

Model Selection Oracle:
fO = argminm∈M ‖f − Pmf‖2 + λ log N

N dim(m)

Maxiset Oracle: fO′ = argminm∈M ‖Y − PmY ‖2 + λ log N
4N dim(m)

Model selection:

E(‖f−FS‖2+λ
log N

N
dim(mF )) ≤ C

(

‖f − fO‖2 + λ
log N

N
dim(mO)

)

??

Maxiset:

‖f − fO′‖2 + λ
log N

N
dim(mO′) ≤ CE(‖f − FS‖2) ??

Model selection: general case but in probability.
Maxiset: simple case (embedded models).



Model Selection – 1

Players:

Estimate: FS = argminm∈M ‖Y − PmY ‖2 + λ log N
N dim(m)

Model Selection Oracle:
fO = argminm∈M ‖f − Pmf‖2 + λ log N

N dim(m)

Model selection: With large probability

‖f − FS‖2 + λ
log N

N
dim(mF ) ≤ C

(

‖f − fO‖2 + λ
log N

N
dim(mO)

)

Uniform noise control over all models m: Gaussian concentration
inequality

P
(

∀m, ‖PmW‖ ≤
√

12 log N dim(m)
)

≥ 1 − 1

N



Model Selection – 2
By definition:

‖Y − FS‖2 + λ
log N

N
dim(mF ) ≤ ‖Y − fO‖2 + λ

log N

N
dim(mO)

and using ‖Y − g‖2 = ‖Y − f‖2 + 2〈Y − f, f − g〉 + ‖f − g‖2

‖f − FS‖2 + λ
log N

N
dim(mF ) ≤ ‖f − fO‖2 + λ

log N

N
dim(mO)

+
2√
N

〈W, fO − FS〉

|〈W, fO − FS〉| ≤ ‖PmO∪mF
W‖ ‖fP − FS‖ .

‖fO−FS‖ ≤ ‖fO−f‖+‖f −FS‖ ≤ 2(‖f −FS‖2+λ log N
N dim(mF ))1/2 .

Concentration inequality:

P
(

∀m, ‖PmW‖ ≤
√

12 log N dim(m)
)

≥ 1 − 1

N

Thus with P ≥ 1 − 1
N ,

‖PmO∪mF
W‖ ≤

√

12 log N(dim mO + dim(mF ))

|〈W, fO − FS〉| ≤
√

48/λ2(‖f − FS‖2 + λ
log N

N
dim(mF )) .



Maxiset – 1
Maxiset:

‖f − fO′‖2 + λ
log N

N
dim(mO′) ≤ CE(‖f − FS‖2)???

No but

E(‖f − FS‖2) ≤ C

(

log N)

N

)
β

β+1

=⇒ min
m∈MN

‖f − Pmf‖2 + log N
dim(m)

N
≤ C

(

log N

N

)
β

β+1

=⇒ f ∈ Aβ

Simple proof when the models are embedded (m1 ⊂ m2 or m1 ⊃ m2 for
all m1, m2).
General case much more complex...
Thresholding is a simple extension of the embedded model case.



Maxiset – 2
We are going to prove that ‖f − FS‖2 ≥ ‖f − fO‖2 !
If mF ⊂ mO, ‖f − FS‖2 ≥ ‖f − PmF

f‖2 ≥ ‖f − fO‖2.
Otherwise mF ⊃ mO and ‖f − FS‖2 = ‖f − PmF

f |2 + ‖PmF
f − FS‖2 =

‖f − PmO
f |2 + ‖PmO

W |2 + ‖PmF \mO
W‖2 − ‖PmF \mO

f‖2 .
Recall that

‖Y − PmF
Y ‖2 + λ

log N

N
dim(mF ) ≤ ‖Y − PmO

Y ‖2 + λ
log N

N
dim(mO)

‖f − PmO
f‖2 + λ

log N

4N
dim(mO) ≤ ‖f − PmF

f‖2 + λ
log N

4N
dim(mF )

Thus

‖PmF \mO
f‖2 ≤ 1

4
‖PmF \mO

Y ‖2

‖PmF \mO
f‖2 ≤ 1

2

(

‖PmF \mO
W‖2 + ‖PmF \mO

f‖2
)

which leads to
‖PmF \mO

f‖2 ≤ ‖PmF \mO
W‖2



Maxiset – 3
We prove that ‖f − fO‖2 ≤ ‖f − FS‖2 and thus that

‖f − fO‖2 ≤ E(‖f − FS‖2) ≤ C

(

λN

N

)
β

β+1

We should now work on the dependency on N to control the number of

term and prove that ‖f − fO‖2 + λ log N
N dim(mO) ≤ C ′

(

λN

N

)
β

β+1

Using that mO(N/2) is not as efficient as mO(N) so that

‖f − fO(N)‖2 + λ
log N

N
dim(mO(N)) ≤ ‖f − fO(N/2)‖2 + λ

log N

N
dim(mO(N/2))

≤ 1

2
‖f − fO(N/2)‖2

+
1

2

(

‖f − fO(N/2)‖2 + λ
log N

N/2
dim(mO(N/2))

)

Slightly more tricky because of the log N ...
Conclusion obtained by recursion.


